Selasa, 16 September 2008

HUKUM II NEWTON

Pengantar

Dalam Hukum I Newton, kita telah belajar bahwa jika tidak ada gaya total yang bekerja pada sebuah benda, maka benda tersebut akan tetap diam, atau jika benda tersebut sedang bergerak maka benda tersebut tetap bergerak dengan laju tetap pada lintasan lurus. Apa yang terjadi jika gaya total tidak sama dengan nol ? Sebelum menjawab pertanyaan tersebut, apakah anda sudah memahami pengertian gaya total ? Jika belum, silahkan pahami penjelasan gurumuda berikut ini. Selamat belajar Hukum II Newton, semoga sukses sampai di tempat tujuan ;) semoga Hukum Newton semakin dekat di hati anda :)

Pengertian Gaya Total

Seperti apakah gaya total itu ? Misalnya kita mendorong sekeping uang logam di atas meja; setelah bergerak, uang logam yang didorong tersebut berhenti. Ketika kita mendorong uang logam tadi, kita memberikan gaya berupa dorongan sehingga uang logam begerak. Nah, selain gaya dorongan kita, pada logam tersebut bekerja juga gaya gesekan udara dan gaya gesekan antara permukaan bawah uang logam dan permukaan meja, yang arahnya berlawanan dengan arah gaya dorongan kita. Apabila jumlah selisih antara kekuatan dorongan kita (Gaya dorong) dan gaya gesekan (baik gaya gesekan udara maupun gaya gesekan antara permukaan logam dan meja) adalah nol, maka uang logam berhenti bergerak/diam. Jika selisih antara gaya dorong yang kita berikan dengan gaya gesekan tidak nol, maka uang logam tersebut akan tetap bergerak. Selisih antara gaya dorong dan gaya gesekan tersebut dinamakan gaya total. Semoga ilustrasi sederhana ini bisa membantu anda memahami pengertian gaya total.

Hukum II Newton

Sekarang kita kembali ke pertanyaan awal pada bagian pengantar. Apa yang terjadi jika gaya total yang bekerja pada benda tidak sama dengan nol ? Newton mengatakan bahwa jika pada sebuah benda diberikan gaya total atau dengan kata lain, terdapat gaya total yang bekerja pada sebuah benda, maka benda yang diam akan bergerak, demikian juga benda yang sedang bergerak bertambah kelajuannya. Apabila arah gaya total berlawanan dengan arah gerak benda, maka gaya tersebut akan mengurangi laju gerak benda. Apabila arah gaya total berbeda dengan arah gerak benda maka arah kecepatan benda tersebut berubah dan mungkin besarnya juga berubah. Karena perubahan kecepatan merupakan percepatan maka kita dapat menyimpulkan bahwa gaya total yang bekerja pada benda menyebabkan benda tersebut mengalami percepatan. Arah percepatan tersebut sama dengan arah gaya total. Jika besar gaya total tetap atau tidak berubah, maka besar percepatan yang dialami benda juga tetap alias tidak berubah.

Bagaimana hubungan antara Percepatan dan Gaya ? Pernahkah anda mendorong sesuatu ? mungkin motor yang mogok atau gerobak sampah ;) jika belum pernah mendorong sesuatu seumur hidup anda, gurumuda menyarankan agar sebaiknya anda berlatih mendorong. Tapi jangan mendorong mobil orang lain yang sedang diparkir, apalagi mendorong teman anda hingga jatuh. Ok, kembali ke dorong…

Bayangkanlah anda mendorong sebuah gerobak sampah yang bau-nya menyengat. Usahakan sampai gerobak tersebut bergerak. Nah, ketika gerobak bergerak, kita dapat mengatakan bahwa terdapat gaya total yang bekerja pada gerobak itu. Silahkan dorong gerobak sampah itu dengan gaya tetap selama 30 detik. Ketika anda mendorong gerobak tersebut dengan gaya tetap selama 30 menit, tampak bahwa gerobak yang tadinya diam, sekarang bergerak dengan laju tertentu, anggap saja 4 km/jam. Sekarang, doronglah gerobak tersebut dengan gaya dua kali lebih besar (gerobaknya didiamin dulu). Apa yang anda amati ? wah, gawat kalau belajar sambil ngelamun… Jika anda mendorong gerobak sampah dengan gaya dua kali lipat, maka gerobak tersebut bergerak dengan laju 4 km/jam dua kali lebih cepat dibandingkan sebelumnya. Percepatan gerak gerobak dua kali lebih besar. Apabila anda mendorong gerobak dengan gaya lima kali lebih besar, maka percepatan gerobak juga bertambah lima kali lipat. Demikian seterusnya. Kita bisa menyimpulkan bahwa percepatan berbanding lurus dengan gaya total yang bekerja pada benda.

Seandainya percobaan mendorong gerobak sampah diulangi. Percobaan pertama, kita menggunakan gerobak yang terbuat dari kayu, sedangkan percobaan kedua kita menggunakan gerobak yang terbuat dari besi dan lebih berat. Jika anda mendorong gerobak besi dengan gaya dua kali lipat, apakah gerobak tersebut bergerak dengan laju 4 km/jam dua kali lebih cepat dibandingkan gerobak sebelumnya yang terbuat dari kayu ?

Tentu saja tidak karena percepatan juga bergantung pada massa benda. Anda dapat membuktikannya sendiri dengan melakukan percobaan di atas. Jika anda mendorong gerobak sampah yang terbuat dari sampah dengan gaya yang sama ketika anda mendorong gerobak yang terbuat dari kayu, makaakan terlihat bahwa percepatan gerobak besi lebih kecil. Apabila gaya total yang bekerja pada benda tersebut sama, maka makin besar massa benda, makin kecil percepatannya, sebaliknya makin kecil massa benda makin besar percepatannya.

Hubungan ini dikemas oleh eyang Newton dalam Hukum-nya yang laris manis di sekolah, yakni Hukum II Newton tentang Gerak :

Jika suatu gaya total bekerja pada benda, maka benda akan mengalami percepatan, di mana arah percepatan sama dengan arah gaya total yang bekerja padanya. Vektor gaya total sama dengan massa benda dikalikan dengan percepatan benda.

m adalah massa benda dan a adalah (vektor) percepatannya. Jika persamaan di atas ditulis dalam bentuk a = F/m, tampak bahwa percepatan sebuah benda berbanding lurus dengan resultan gaya yang bekerja padanya dan arahnya sejajar dengan gaya tersebut. Tampak juga bahwa percepatan berbanding terbalik dengan massa benda.

Jadi apabila tidak ada gaya total alias resultan gaya yang bekerja pada benda maka benda akan diam apabila benda tersebut sedang diam; atau benda tersebut bergerak dengan kecepatan tetap, jika benda sedang bergerak. Ini merupakan bunyi Hukum I Newton.

Setiap gaya F merupakan vektor yang memiliki besar dan arah. Persamaan hukum II Newton di atas dapat ditulis dalam bentuk komponen pada koordinat xyz alias koordinat tiga dimensi, antara lain :

Satuan massa adalah kilogram, satuan percepatan adalah kilogram meter per sekon kuadrat (kg m/s2). Satuan Gaya dalam Sistem Internasional adalah kg m/s2. Nama lain satuan ini adalah Newton; diberikan untuk menghargai jasa eyang Isaac Newton. Satuan-satuan tersebut merupaka satuan Sistem Internasional (SI). Dengan kata lain, satu Newton adalah gaya total yang diperlukan untuk memberikan percepatan sebesar 1 m/s2 kepada massa 1 kg. Hal ini berarti 1 Newton = 1 kg m/s2.

Dalam satuan CGS (centimeter, gram, sekon), satuan massa adalah gram (g), gaya adalah dyne. Satu dyne didefinisikan sebagai gaya total yang diperlukan untuk memberi percepatan sebesar 1 cm/s2 untuk benda bermassa 1 gram. Jadi 1 dyne = 1 gr cm/s2.

Kedua jenis satuan yang kita bahas di atas adalah satuan Sistem Internasional (SI). Untuk satuan Sistem Inggris (British Sistem), satuan gaya adalah pound (lb). 1 lb = 4,45 N. Satuan massa = slug. Dengan demikian, 1 pound didefinisikan sebagai gaya total yang diperlukan untuk memberi percepatan sebesar 1 ft/s2 kepada benda bermassa 1 slug.

Dalam perhitungan, sebaiknya anda menggunakan satuan MKS (meter, kilogram, sekon) SI. Jadi jika diketahui satuan dalam CGS atau sistem British, terlebih dahulu anda konversi.

Contoh soal 1 :

Berapakah gaya total yang dibutuhkan untuk memberi percepatan sebesar 10 m/s2 kepada mobil yang bermassa 2000 kg ?

Panduan Jawaban :

Guampang …

Contoh soal 2 :

Dirimu mendorong sebuah kotak bermassa 1 kg yang terletak pada permukaan meja datar tanpa gesekan,dengan gaya sebesar 5 N. berapakah percepatan yang dialami kotak tersebut ?

Panduan jawaban :

Contoh soal 3 :

Mesin sebuah mobil sedan mampu menghasilkan gaya sebesar 10000 N. Massa pengemudi dan mobil tersebut sebesar 1000 kg. Jika gaya gesekan udara dan gaya gesekan antara ban dan permukaan jalan sebesar 500 N, berapakah percepatan mobil tersebut ?

Panduan jawaban :

Terlebih dahulu kita tuliskan persamaan Hukum II Newton :

Ingat bahwa gaya gesekan bekerja berlawanan arah dengan gaya yang menggerakan mobil. Selisih antara kedua gaya tersebut menghasilkan gaya total. Karena yang ditanyakan adalah percepatan mobil maka persamaan di atas kita tulis kembali sbb :

Contoh soal 4 :

Sebuah gaya yang dikerjakan pada sebuah benda bermassa m1 menghasilkan percepatan 2 m/s2. Gaya yang sama ketika dikerjakan pada sebuah benda bermassa m2 menghasilkan percepatan sebesar 4 m/s2. (a) berapakah nilai perbandingan antara m1 dan m2 (m1/m2) ? (b) berapakah percepatan yang dihasilkan jika m1 dan m2 digabung (m1 + m2) ?

Panduan Jawaban :

(a) nilai perbandingan antara m1 dan m2 adalah :

(b) jika m1 + m2 digabung maka percepatan yang dihasilkan adalah :

Kita gantikan nilai m1 dengan 2m2 pada persamaan 1

Waduh, pusing…. ;) dipahami perlahan-lahan. Ntar juga ngerti kok….. gampang.

HUBUNGAN ANTARA GAYA DAN GLBB

Kita telah belajar mengenai Gerak Lurus Berubah Beraturan (GLBB) pada pembahasan mengenai Kinematika. Nah, pada pembahasan mengenai kinematika, kita mengabaikan gaya. Sekarang kita analisis Gerak Lurus Berubah Beraturan dan mengaitkannya dengan Gaya sebagai penyebab gerakan benda dan juga sebagai penghambat gerakan benda (gaya gesek).

Terdapat tiga persamaan pada GLBB, yakni :

Ketiga persamaan tersebut mempunyai komponen percepatan alias a.

Dengan demikian, gaya total alias resultan gaya dihubungkan dengan GLBB oleh percepatan.

Contoh soal 1 :

Sebuah truk gandeng bermassa 3000 kg sedang melaju dengan kelajuan 100 km/jam. berapakah gaya total yang dibutuhkan untuk menghentikan truk tersebut pada jarak 50 meter ?

Panduan jawaban :

Terlebih dahulu kita tulis persamaan hukum II Newton :

Untuk menyelesaikan soal kita membutuhkan besar percepatan, sedangkan pada soal di atas hanya diketahui massa truk. Nilai percepatan masih tersembunyi di balik kelajuan 100 km/jam dan jarak 50 meter. Kita harus menghitung nilai percepatan truk terlebih dahulu. Bagaimanakah ?

Kita tinjau gerak truk di atas menggunakan Gerak Lurus Berubah Beraturan. Kecepatan awal alias vo = 100 km/jam = 28 m/s. Karena truk akan berhenti, maka kecepatan akhir alias vt = o. Jarak yang ditempuh adalah 50 meter. Karena komponen gerak yang diketahui adalah kecepatan awal dan akhir serta jarak, maka kita menggunakan persamaan GLBB :

Akhirnya a ditemukan. Nah, dengan demikian kita dengan sangat mudah menghitung besar gaya total :

Selesai… gampang khan ?

Contoh soal 2 :

Sebuah mobil bermassa 500 kg dipercepat oleh mesinnya dari keadaan diam hingga bergerak dengan laju 50 m/s dalam waktu 50 s. Apabila gaya gesekan diabaikan, berapakah gaya yang dihasilkan mobil ?

Panduan jawaban :

Karena yang ditanyakan gaya yang dihasilkan mobil maka terlebih dahulu kita tulis persamaan Hukum II Newton :

Nah, perhatikan bahwa kita belum bisa menentukan besarnya gaya karena percepatan belum diketahui. Oleh karena itu kita temukan terlebih dahulu nilai percepatan menggunakan persamaan GLBB. Baca secara saksama soal di atas. Selain massa, apa saja yang diketahui ?

Pada mulanya mobil diam, berarti vo = 0. Kecepatan akhir (vt) = 50 m/s dan waktu (t) = 50 s. karena yang diketahui vo, vt dan t maka untuk menentukan percepatan, kita menggunakan persamaan

Guampang sekali…. ;)

Contoh soal 3 :

Sebuah mobil bermassa 500 kg bergerak dengan kelajuan 50 m/s. Jika mobil tersebut direm oleh sopirnya dan berhenti setelah menempuh jarak 100 m, berapakah gaya rem yang bekerja pada mobil tersebut ?

Panduan jawaban :

Kita tulis terlebih dahulu persamaan hukum II Newton.

Nah, untuk menghitung gaya rem, maka kita harus mengetahui perlambatan alias percepatan yang bernilai negatif, yang dialami mobil tersebut.

Ingat bahwa mobil tersebut direm ketika bergerak dengan laju 50 m/s. ini adalah kelajuan awal (vo). Karena setelah direm mobil berhenti, maka kelajuan akhir (vt) = 0. Jarak yang ditempuh mobil sejak direm hingga berhenti (s) adalah 100 m. Dengan demikian, karena diketahui vo, vt dan s maka kita menggunakan persamaan di bawah ini :

Tanda negatif menunjukkan bahwa arah percepatan berlawanan dengan arah gerak mobil atau dengan kata lain mobil mengalami perlambatan. Kita masukan nila a ke dalam persamaan hukum II Newton untuk menghitung gaya rem

Tanda negatif menunjukkan bahwa arah gaya rem berlawanan dengan arah gerak mobil. Jadi arah gaya rem searah dengan arah perlambatan (percepatan yang bernilai negatif)

ANALISIS KUANTITATIF UNTUK UNTUK PERSOALAN DINAMIKA SEDERHANA

Catatan dari GuruMuda : agar memahami pembahasan ini dengan baik, terlebih dahulu pelajari pembahasan mengenai massa, berat, gaya normal dan gaya gesekan. Jika anda belum mempelajari pokok bahasan tersebut, sebaiknya dipelajari dengan penuh semangat dan pahami penjelasannya yang telah GuruMuda sajikan di blog ini. Hal ini dimaksudkan agar anda tidak kebingungan apalagi sampai teler, pusing dan ingin buang air kecil, sedang dan besar ke belakang lewat depan ;)

bErSambUnG

Referensi :

Giancoli, Douglas C., 2001, Fisika Jilid I (terjemahan), Jakarta : Penerbit Erlangga

Halliday dan Resnick, 1991, Fisika Jilid I, Terjemahan, Jakarta : Penerbit Erlangga

Tipler, P.A.,1998, Fisika untuk Sains dan Teknik-Jilid I (terjemahan), Jakarta : Penebit Erlangga

Young, Hugh D. & Freedman, Roger A., 2002, Fisika Universitas (terjemahan), Jakarta : Penerbit Erlangga

Read More..

HUKUM III NEWTON TENTANG AKSI - REAKSI

Pengantar

Pernahkah anda menendang batu ? belum… pernahkah dirimu menendang dirinya ? ;) Pernakah anda menendang atau memukul alias meninju sesuatu ? jika pernah, apa yang anda rasakan ? sakit… bisakah dirimu menjelaskan mengapa tangan atau kaki terasa sakit ? Apabila anda tidak bisa menjelaskannya, pelajarilah Hukum III Newton dengan penuh semangat :)

Hukum III Newton

Pada Hukum II Newton, kita belajar bahwa gaya-gaya mempengaruhi gerakan benda. Dari manakah gaya tersebut datang ? dalam kehidupan sehari-hari, kita mengamati bahwa gaya yang diberikan kepada sebuah benda, selalu berasal dari benda lain. gerobak bergerak karena kita yang mendorong, paku dapat tertanam karena dipukul dengan martil, buah mangga yang lezat jatuh karena ditarik oleh gravitasi bumi, demikian juga benda yang terbuat dari besi ditarik oleh magnet. Apakah semua benda bergerak karena diberikan gaya oleh benda lain ?

Eyang Newton mengatakan bahwa kenyataan dalam kehidupan sehari-hari tidak semuanya seperti itu. Ketika sebuah benda memberikan gaya kepada benda lain maka benda kedua tersebut membalas dengan memberikan gaya kepada benda pertama, di mana gaya yang diberikan sama besar tetapi berlawanan arah. Jadi gaya yang bekerja pada sebuah benda merupakan hasil interaksi dengan benda lain. Anda dapat melakukan percobaan untuk membuktikan hal ini. Tendanglah batu atau tembok dengan keras, maka kaki anda akan terasa sakit (jangan dilakukan). Mengapa kaki terasa sakit ? hal ini disebabkan karena ketika kita menendang tembok atau batu, tembok atau batu membalas memberikan gaya kepada kaki kita, di mana besar gaya tersebut sama, hanya berlawanan arah. Gaya yang kita berikan arahnya menuju batu atau tembok, sedangkan gaya yang diberikan oleh batu atau tembok arahnya menuju kaki kita. Ketika kita menendang bola, gaya yang kita berikan tersebut menggerakan bola. Pada saat yang sama, kita merasa gaya dari bola menekan kaki kita. Jika anda punya skate board, lakukanlah percobaan berikut ini sehingga semakin menambah pemahaman anda. letakan papan luncur alias skate board di dekat sebuah tembok. Berdirilah di atas skate board (papan luncur) tersebut dan doronglah tembok dihadapan anda. Apa yang anda alami ? skate board tersebut meluncur ke belakang. Aneh khan ? padahal anda tidak mendorong skate board ke belakang. Skate board meluncur ke belakang karena tembok yang anda dorong membalas memberikan gaya dorong kepada anda, di mana arah gaya yang diberikan tembok berlawanan arah dengan arah dorongan anda. anda mendorong tembok ke depan, sedangkan tembok mendorong anda ke belakang sehingga skate board kesayangan anda meluncur ke belakang. Jika anda tinggal di tepi pantai dan termasuk anak pantai, lakukanlah percobaan dengan menaiki perahu dan melemparkan sesuatu, entah batu atau benda lain ke luar dari perahu. Lakukanlah hal ini ketika perahu sedang diam. Amati bahwa perahu akan bergerak ke belakang jika anda melempar ke depan, dan sebaliknya. Serius… diriku pernah mencobanya. Nah, semua penjelasan panjang lebar ini adalah inti Hukum III Newton.

Apabila sebuah benda memberikan gaya kepada benda lain, maka benda kedua memberikan gaya kepada benda yang pertama. Kedua gaya tersebut memiliki besar yang sama tetapi berlawanan arah.

Secara matematis Hukum III Newton dapat ditulis sebagai berikut :

F A ke B = - F B ke A

F A ke B adalah gaya yang diberikan oleh benda A kepada benda B, sedangkan F B ke A adalah gaya yang yang diberikan benda B kepada benda A. Misalnya ketika anda menendang sebuah batu, maka gaya yang anda berikan adalah F A ke B, dan gaya ini bekerja pada batu. Gaya yang diberikan oleh batu kepada kaki anda adalah - F B ke A. Tanda negatif menunjukkan bahwa arah gaya reaksi tersebut berlawanan dengan gaya aksi yang anda berikan. Jika anda menggambar tanda panah yang melambangkan interaksi kedua gaya ini, maka gaya F A ke B digambar pada batu, sedangkan gaya yang diberikan batu kepada kaki anda, - F B ke A, digambarkan pada kaki anda.

Persamaan Hukum III Newton di atas juga bisa kita tulis sebagai berikut :

Faksi = -Freaksi

Hukum warisan eyang Newton ini dikenal dengan julukan hukum aksi-reaksi. Ada aksi maka ada reaksi, yang besarnya sama dan berlawanan arah. Kadang-kadang kedua gaya tersebut disebut pasangan aksi-reaksi. Ingat bahwa kedua gaya tersebut (gaya aksi-gaya reaksi) bekerja pada benda yang berbeda. Berbeda dengan Hukum I Newton dan Hukum II Newton yang menjelaskan gaya yang bekerja pada benda yang sama.

Gaya aksi dan reaksi adalah gaya kontak yang terjadi ketika kedua benda bersentuhan. Walaupun demikian, Hukum III Newton juga berlaku untuk gaya tak sentuh, seperti gaya gravitasi yang menarik buah mangga kesayangan anda. Ketika kita menjatuhkan batu, misalnya, antara bumi dan batu saling dipercepat satu dengan lain. batu bergerak menuju ke permukaan bumi, bumi juga bergerak menuju batu. Gaya total yang bekerja pada bumi dan batu besarnya sama. Bumi bergerak ke arah batu yang jatuh ? masa sich… karena massa bumi sangat besar maka percepatan yang dialami bumi sangat kecil (Ingat hubungan antara massa dan percepatan pada persamaan hukum II Newton). Walaupun secara makroskopis tidak tampak, tetapi bumi juga bergerak menuju batu atau benda yang jatuh akibat gravitasi. Bumi menarik batu, batu juga membalas gaya tarik bumi, di mana besar gaya tersebut sama namun arahnya berlawanan.

Hukum III Newton dalam Kehidupan Sehari-hari

Konsep Hukum III Newton sebenarnya sering kita alami dalam kehidupan sehari-hari, walau kadang tidak kita sadari. Hal apa saja dalam kehidupan sehari-hari yang menggunakan konsep Hukum III Newton ?

Hukum III Newton berlaku ketika kita berjalan atau berlari

Ketika berjalan, telapak kaki kita memberikan gaya aksi dengan mendorong permukaan tanah atau lantai ke belakang. Permukaan tanah atau lantai memberikan gaya reaksi kepada kita dengan mendorong telapak kaki kita ke depan, sehingga kita berjalan ke depan. Ketika berjalan mundur, telapak kaki kita mendorong permukaan tanah atau lantai ke depan. Sebagai reaksi, permukaan tanah atau lantai mendorong telapak kaki kita ke belakang sehingga kita bisa berjalan mundur. Besarnya gaya aksi dan reaksi sama, tetapi arahnya berlawanan. Telapak kaki kita mendorong lantai ke belakang, lantai mendorong telapak kaki kita ke depan. Ketika kita berjalan lambat, gaya yang kita berikan kecil, sehingga gaya reaksi yang diberikan oleh lantai juga kecil, akibatnya kita berjalan pelan. Pada saat kita berjalan cepat, telapak kaki kita menekan lantai lebih kuat, akibatnya gaya reaksi yang diberikan lantai juga besar sehingga kita didorong dengan kuat ke depan. Dirimu dapat melakukan percobaan ini untuk membuktikannya. Ketika kita berlari, gaya aksi berupa dorongan yang diberikan oleh telapak kaki kita kepada permukaan tanah sangat besar sehingga gaya reaksi yang diberikan oleh permukaan tanah kepada telapak kaki kita juga sangat besar. Akibatnya kita bisa berlari dengan kencang. Jadi besarnya gaya reaksi yang diberikan oleh permukaan tanah atau lantai kepada telapak kaki kita sebanding alias sama besar dengan gaya aksi yang kita berikan dan arahnya berlawanan.

Hukum III Newton berlaku ketika kita berenang

Apakah dirimu bisa berenang ? kalo belum bisa, ayo belajar berenang… gampang kok. Kaya belajar naik sepeda atau motor, awalnya memang agak sulit tapi kalo sering latihan ntar juga mahir, asyik lagi.. :)

Ketika kita berenang, kaki dan tangan kita mendorong air ke belakang. Sebagai reaksi, air mendorong kaki dan tangan kita ke depan, sehingga kita berenang ke depan.

Hukum III Newton berlaku pada pistol atau senapan yang ditembakan

Ketika sebuah peluru ditembakan, pistol atau senapan memberikan gaya aksi kepada peluru dengan mendorong peluru ke depan. Karena mendapat gaya aksi maka peluru tersebut mendorong pistol atau senapan ke belakang. Akibatnya, para penembak merasa tersentak ke belakang akibat dorongan tersebut. Seandainya dirimu bercita-cita menjadi polisi atau tentara maka suatu saat nanti bisa melakukan percobaan untuk membuktikannya. Kalau terbukti, ingat eyang Newton sama GuruMuda ya ;)

Hukum III Newton berlaku pada Balon Udara yang bergerak

Pernahkah dirimu melihat dan memegang balon ? ya pernah-lah… saking gemes, balon-balon dipecahin semua :) Hukum III Newton juga berlaku pada balon udara yang bergerak ? balon udara bergerak ? maksudnya bagaimanakah…. Yang dimaksudkan di sini bukan balon udara yang bergerak karena ditiup angin, tapi karena di dorong oleh udara yang ada di dalam balon. Bertambah bingung-kah ? lakukan percobaan berikut ini sehingga menambah pemahamanmu. Beli sebuah balon di warung terdekat (murah kok, lagian cuma satu). Tiuplah balon sampai balon mengembung; jangan lupa jepit mulut balon dengan jarimu agar udara tidak keluar. Nah, silahkan lepas jepitan tanganmu pada mulut balon. Apa yang terjadi ? balon tersebut bergerak khan ? jika posisi balon tegak, di mana mulut balon berada di bawah, maka balon akan meluncur ke atas. Balon bergerak ke atas karena balon memberikan gaya aksi dengan mendorong udara ke bawah (udara keluar lewat mulut balon). Udara yang keluar lewat mulut balon memberikan gaya reaksi dengan mendorong balon ke atas, sehingga balon bergerak ke atas. Apabila posisi balon dibalik, di mana mulut balon berada di atas, maka balon akan bergerak ke bawah. Besar gaya aksi dan reaksi sama, hanya berlawanan arah. Balon mendorong udara ke bawah, udara mendorong balon ke atas. Atau sebaliknya balon mendorong udara ke atas, udara mendorong balon ke bawah. Semakin banyak udara yang ditiupkan ke dalam balon, maka balon bergerak makin cepat ketika mulut balon tersebut dibuka. Hal ini disebabkan karena balon mendorong lebih banyak udara keluar, sehingga udara yang didorong tersebut memberikan reaksi dengan mendorong balon. Semakin banyak udara yang ada di dalam balon, semakin lama dan jauh balon bergerak; semakin sedikit udara dalam balon, semakin pelan balon bergerak. Jadi besar gaya aksi sama dengan besar gaya reaksi, hanya arahnya berlawanan.

Hukum III Newton berlaku pada Ikan Gurita yang bergerak dalam air.

Pernahkah dirimu menikmati lezatnya ikan gurita ? enak banget, manyus… ga ada tulang lagi, wah pokoknya sedap. Awas air liurmu tiris ;) ikan gurita ga punya sirip… lalu bagaimana-kah ia berenang ? Hukum III Newton lagi… Hukum III Newton lagi… eyang newton menguasai darat, udara dan laut. Ikan newton, eh ikan gurita bergerak ke depan dengan menyemprotkan air ke belakang (gaya aksi); air yang disemprotkan tersebut mendorong ikan gurita ke depan (gaya reaksi), sehingga ikan gurita bisa berenang bebas di dalam air laut.

Peluncuran Roket menggunakan konsep Hukum III Newton

Bagaimanakah prinsip kerja roket yang diluncurkan ke luar angkasa ? di luar angkasa tidak udara, tapi mengapa roket bisa bergerak ? helikopter atau pesawat terbang bisa bergerak di udara karena terdapat baling-baling yang menggerakan udara, sedangkan roket bisa bergerak di luar angkasa (ruang hampa udara ?) kok bisa ya…. Bagaimanakah dirimu menjelaskannya ?

Konsep dasar peluncuran roket sama dengan percobaan balon yang meluncur ke atas. Roket memberikan gaya aksi yang sangat besar kepada gas dengan mendorong gas keluar dan gas tersebut memberikan gaya reaksi yang sama besar, dengan mendorong roket ke atas. Gaya dorong yang diberikan gas kepada roket sama besar dengan gaya yang diberikan roket kepada gas, hanya arahnya berlawanan. Roket mendorong gas ke bawah, gas mendorong roket ke atas.

Bagaimanakah dengan pesawat jet ? pesawat jet juga menggunakan konsep hukum III Newton. Mesin pesawat jet memberikan gaya aksi dengan menyemburkan gas keluar lewat belakang pesawat, dan gas tersebut memberikan gaya reaksi dengan mendorong pesawat jet ke depan. Gaya dorong yang dilakukan oleh mesin pesawat jet terhadap gas sangat besar sehingga gas juga mendorong pesawat jet dengan gaya yang sangat besar. Mesin pesawat jet mendorong gas ke belakang, gas mendorong pesawat jet ke depan. Jadi arah gaya berlawanan, tapi besar gaya sama. Pesawat jet bergerak horisontal alias mendatar, sedangkan roket bergerak vertikal alias tegak lurus permukaan bumi. Selesai…. Asyik khan fisika ? dengan fisika, kita bisa menjelaskan banyak hal dalam kehidupan kita… ini baru hukum III Newton lho, belom yang laen… pokoknya seru deh…

Oya, baru lupa…

Mengapa mobil bergerak ?

Mobil bergerak karena mesin menggerakan roda sehingga roda berputar. Karena roda berputar maka mobil atau sepeda motor bergerak. Hmmm, apakah hanya demikian jawabannya ?

Penjelasan seperti ini belum cukup, karena jika mobil atau sepeda motor berada di atas permukaan es atau jalan yang sangat licin (tidak ada gesekan), apakah mobil masih bisa bergerak ? paling rodanya muter di tempat. Mobil atau sepeda motor bisa bergerak ke depan karena ada gaya gesekan yang diberikan jalan pada roda. Gaya gesekan ini adalah gaya reaksi terhadap gaya aksi yang diberikan oleh roda terhadap jalan.

Semakin cepat roda berputar, maka semakin cepat roda tersebut memberikan gaya aksi kepada jalan, dan jalan juga memberikan gaya reaksi secara cepat kepada roda kendaraan. Ingat bahwa gaya aksi dan reaksi tersebut bekerja sepanjang jalan yang dilewati oleh kendaraan beroda. Apakah gaya aksi dan reaksi antara roda dan jalan tersebut yang membuat mobil bergerak cepat ? bukan… mesin kendaraan yang memutar roda dengan cepat sehingga kendaraan beroda bergerak cepat. Jika mesin memutar roda dengan lambat maka kendaraan beroda akan berjalan lambat. Tetapi ingat bahwa kendaraan beroda bisa bergerak karena terjadi gaya aksi-reaksi antara roda dan jalan sepanjang lintasan kendaraan tersebut. Dirimu bisa memahami penjelasan GuruMuda khaen ? kalo bingun dibaca perlahan-lahan, kalo belum puas bisa diulangi sampai puas dan ngerti… okhe ?

Ssttt….kalo lagi nyetir mobil atau motor jangan mikiran gaya aksi-reaksi ya…. ntar aksi-reaksinya bukan antara roda dan jalan tapi malah antara dirimu dan jalan :) pisss….

Catatan :

Ingat ya, gaya mempengaruhi gerak benda jika diberikan kepada benda tersebut. Gaya yang diberikan oleh sebuah benda tidak mempengaruhi benda tersebut, tetapi mempengaruhi benda lain yang diberi gaya itu. Misalnya, ketika roda memberikan gaya aksi kepada jalan, maka gaya tersebut mempengaruhi jalan, bukan roda sebagai pemberi gaya aksi. Demikian juga ketika jalan memberi gaya reaksi kepada roda, maka gaya tersebut mempengaruhi roda; tidak mempengaruhi jalan. Beda lho… intinya gaya mempengaruhi benda lain yang diberikan gaya. Gaya aksi yang diberikan roda bekerja pada jalan, sedangkan gaya reaksi yang diberikan jalan, bekerja pada roda. Sekian dan semoga bermanfaat…

Referensi :

Giancoli, Douglas C., 2001, Fisika Jilid I (terjemahan), Jakarta : Penerbit Erlangga

Halliday dan Resnick, 1991, Fisika Jilid I, Terjemahan, Jakarta : Penerbit Erlangga

Kanginan, Marthen, 2002, Fisika untuk SMA kelas X, Semester 1, Jakarta : Penerbit Erlangga

Tipler, P.A.,1998, Fisika untuk Sains dan Teknik-Jilid I (terjemahan), Jakarta : Penebit Erlangga

Young, Hugh D. & Freedman, Roger A., 2002, Fisika Universitas (terjemahan), Jakarta : Penerbit Erlangga

Read More..